23 research outputs found

    Bio-inspired learning and hardware acceleration with emerging memories

    Get PDF
    Machine Learning has permeated many aspects of engineering, ranging from the Internet of Things (IoT) applications to big data analytics. While computing resources available to implement these algorithms have become more powerful, both in terms of the complexity of problems that can be solved and the overall computing speed, the huge energy costs involved remains a significant challenge. The human brain, which has evolved over millions of years, is widely accepted as the most efficient control and cognitive processing platform. Neuro-biological studies have established that information processing in the human brain relies on impulse like signals emitted by neurons called action potentials. Motivated by these facts, the Spiking Neural Networks (SNNs), which are a bio-plausible version of neural networks have been proposed as an alternative computing paradigm where the timing of spikes generated by artificial neurons is central to its learning and inference capabilities. This dissertation demonstrates the computational power of the SNNs using conventional CMOS and emerging nanoscale hardware platforms. The first half of this dissertation presents an SNN architecture which is trained using a supervised spike-based learning algorithm for the handwritten digit classification problem. This network achieves an accuracy of 98.17% on the MNIST test data-set, with about 4X fewer parameters compared to the state-of-the-art neural networks achieving over 99% accuracy. In addition, a scheme for parallelizing and speeding up the SNN simulation on a GPU platform is presented. The second half of this dissertation presents an optimal hardware design for accelerating SNN inference and training with SRAM (Static Random Access Memory) and nanoscale non-volatile memory (NVM) crossbar arrays. Three prominent NVM devices are studied for realizing hardware accelerators for SNNs: Phase Change Memory (PCM), Spin Transfer Torque RAM (STT-RAM) and Resistive RAM (RRAM). The analysis shows that a spike-based inference engine with crossbar arrays of STT-RAM bit-cells is 2X and 5X more efficient compared to PCM and RRAM memories, respectively. Furthermore, the STT-RAM design has nearly 6X higher throughput per unit Watt per unit area than that of an equivalent SRAM-based (Static Random Access Memory) design. A hardware accelerator with on-chip learning on an STT-RAM memory array is also designed, requiring 1616 bits of floating-point synaptic weight precision to reach the baseline SNN algorithmic performance on the MNIST dataset. The complete design with STT-RAM crossbar array achieves nearly 20X higher throughput per unit Watt per unit mm^2 than an equivalent design with SRAM memory. In summary, this work demonstrates the potential of spike-based neuromorphic computing algorithms and its efficient realization in hardware based on conventional CMOS as well as emerging technologies. The schemes presented here can be further extended to design spike-based systems that can be ubiquitously deployed for energy and memory constrained edge computing applications

    On-Sensor Data Filtering using Neuromorphic Computing for High Energy Physics Experiments

    Full text link
    This work describes the investigation of neuromorphic computing-based spiking neural network (SNN) models used to filter data from sensor electronics in high energy physics experiments conducted at the High Luminosity Large Hadron Collider. We present our approach for developing a compact neuromorphic model that filters out the sensor data based on the particle's transverse momentum with the goal of reducing the amount of data being sent to the downstream electronics. The incoming charge waveforms are converted to streams of binary-valued events, which are then processed by the SNN. We present our insights on the various system design choices - from data encoding to optimal hyperparameters of the training algorithm - for an accurate and compact SNN optimized for hardware deployment. Our results show that an SNN trained with an evolutionary algorithm and an optimized set of hyperparameters obtains a signal efficiency of about 91% with nearly half as many parameters as a deep neural network.Comment: Manuscript accepted at ICONS'2

    Live Demonstration:Image Classification Using Bio-inspired Spiking Neural Networks

    No full text

    Learning and real-time classification of hand-written digits with spiking neural networks

    No full text
    We describe a novel spiking neural network (SNN) for automated, real-time handwritten digit classification and its implementation on a GP-GPU platform. Information processing within the network, from feature extraction to classification is implemented by mimicking the basic aspects of neuronal spike initiation and propagation in the brain. The feature extraction layer of the SNN uses fixed synaptic weight maps to extract the key features of the image and the classifier layer uses the recently developed NormAD approximate gradient descent based supervised learning algorithm for spiking neural networks to adjust the synaptic weights. On the standard MNIST database images of handwritten digits, our network achieves an accuracy of 99.80% on the training set and 98.06% on the test set, with nearly 7x fewer parameters compared to the state-of-the-art spiking networks. We further use this network in a GPU based user-interface system demonstrating real-time SNN simulation to infer digits written by different users. On a test set of 500 such images, this real-time platform achieves an accuracy exceeding 97% while making a prediction within an SNN emulation time of less than 100ms.Comment: 4 pages, 4 figures, 1 table, accepted at ICECS 201

    Building brain-inspired computing systems:Examining the role of nanoscale devices

    No full text

    An On-Chip Learning Accelerator for Spiking Neural Networks using STT-RAM Crossbar Arrays

    No full text
    corecore